Tight Contact Structures with No Symplectic Fillings
نویسندگان
چکیده
We exhibit tight contact structures on 3-manifolds that do not admit any symplectic fillings.
منابع مشابه
On symplectic fillings
In this note we make several observations concerning symplectic fillings. In particular we show that a (strongly or weakly) semi-fillable contact structure is fillable and any filling embeds as a symplectic domain in a closed symplectic manifold. We also relate properties of the open book decomposition of a contact manifold to its possible fillings. These results are also useful in showing the ...
متن کاملSymplectic fillability of tight contact structures on torus bundles
We study weak versus strong symplectic fillability of some tight contact structures on torus bundles over the circle. In particular, we prove that almost all of these tight contact structures are weakly, but not strongly symplectically fillable. For the 3–torus this theorem was established by Eliashberg. AMS Classification 53D35; 57M50, 57R65
متن کاملSymplectic Cohomology for Stable Fillings
We discuss a generalisation of symplectic cohomology for symplectic manifolds which weakly fill their contact boundary and satisfy an additional stability condition. Furthermore, we develop a geometric setting for proving maximum principles for Floer trajectories, and prove a Moser-type result for weak fillings. This is a preliminary version of the paper.
متن کاملExplicit Concave Fillings of Contact Three-manifolds
When (M, ξ) is a contact 3-manifold we say that a compact symplectic 4-manifold (X,ω) is a concave filling of (M, ξ) ifM = −∂X and if there exists a Liouville vector field V defined on a neighborhood of M , transverse to M and pointing in to X , such that ξ is the kernel of ıV ω restricted toM . We give explicit, handleby-handle constructions of concave fillings of all closed, oriented, contact...
متن کاملOn Contact and Symplectic Lie Algeroids
In this paper, we will study compatible triples on Lie algebroids. Using a suitable decomposition for a Lie algebroid, we construct an integrable generalized distribution on the base manifold. As a result, the symplectic form on the Lie algebroid induces a symplectic form on each integral submanifold of the distribution. The induced Poisson structure on the base manifold can be represented by m...
متن کامل